Skip to main content

The new quantum inventions can use to make more powerful quantum computers.




"Rydberg parity QAOA protocol. Arbitrarily connected optimization problems can be parity encoded in a regular geometry of neutral atoms trapped in, e.g., optical tweezers. After initializing the Rydberg quantum processor in an equal superposition state. "

"Generating variational wave functions by applying QAOA unitaries. Only requires local control of laser fields generating quasilocal four-qubit (square boxes) and single-qubit gates (disks). Credit: Physical Review Letters (2022). DOI: 10.1103/PhysRevLett.128.120503" (Phys.Org/Researchers develop quantum gate enabling investigation of optimization problems)


The main problem with a quantum computer is the input-output process. The computer or Turing's machine is useless without the ability to introduce information to the user. The quantum gate that is introduced above this text can make the communication between the quantum and binary systems more flexible. 


There are three main problems with quantum computers.


1) How the system can transfer data between quantum and binary systems. That ability is required is that screens and keyboards are using binary systems. The quantum computer is used through binary systems that input and output data in and from the quantum systems. 

2) Quantum computers are sensitive against outcoming effects like electromagnetic radiation. And even gravitational waves can disturb the quantum system. 

3) Quantum entanglement stays only a short time. The quantum entanglement stays for about ten seconds. After that, the system must reform that thing. 


That's why data must store in fast-operating quantum memory units until it can be driven back to a re-adjusted quantum system. Without that ability, quantum computers cannot handle long-term calculations. 

Also, even if long-term quantum entanglement is possible. Data must be backup copied. The reason for breaking the quantum entanglement could be a sudden electromagnetic impact like an eruption of the sun. Or gravitational waves can break the quantum entanglement. 


So how the quantum computers can be easier to use? 


The single-photon source that paves the way for quantum encryption is an interesting tool. That thing makes it possible to make quantum computing much easier. 

In that system, the data will load to single photons. That is launched into a quantum computer. And then those things will superposition and entangled. The single-photon source can use to transmit data to the single electrons. 

That kind of vision is interesting. And the single-photon source can make it possible to transmit data in qubit form over long distances. For long-distance data transmission. Those information carrier photons must cover against outside effects. And in that information photons will load into the laser ray. And then the laser ray will transfer them to the receiver. 

The lasers or photons can also derail electrons through graphene. The photon will push electrons between the graphene layers. Then the photonic interaction will pump the data from the electron to the photons that are the heart of quantum computers. And the data that those superpositioned and entangled photons are carrying will transfer back to electrons and then to graphene. 

The quantum gate that suppresses the data from the multi-qubit system to one qubit will make it possible to create better interaction between binary and quantum systems. The system benefits the Rydberg atoms in its operations. And that thing can make the quantum computer easier to use. The new quantum gate can help to optimize the communication between qubits and binary systems. 

There are many problems with quantum computers. One is noise or turbulence. Superpositioned and entangled photons are very sensitive against outcoming effects. And one way to increase the resistance of quantum computers is to increase the power of the quantum system.  

A Quantum computer's radiation will push disturbing radiation away from the computer. Another way is to use some heavier particles like protons or electrons for making quantum entanglement. 

The problem with those heavier particles is that they are reacting to magnetic fields. The new programmable quantum sensors also make it easier to separate the information from multi-stage qubits and transfer it to the binary system.  

So the quantum entanglement must protect by using powerful magnetic fields. Those kinds of magnetic fields are used in the fusion tests. And they can make the points of the heavy-particle quantum entanglement stable.



https://phys.org/news/2022-03-derails-electrons-graphene.html


https://phys.org/news/2022-03-quantum-gate-enabling-optimization-problems.html


https://phys.org/news/2022-03-single-photon-source-paves-quantum-encryption.html


https://phys.org/news/2022-03-technique-quantum-resilient-noise-boosts.html


Image) https://phys.org/news/2022-03-quantum-gate-enabling-optimization-problems.html


https://miraclesofthequantumworld.blogspot.com/

Comments

Popular posts from this blog

Will humans survive the sun's red giant stage?

"As the Sun matures into a Red Giant, the oceans will boil and Earth will become uninhabitable." (The Conversation, The sun won’t die for 5 billion years, so why do humans have only 1 billion years left on Earth?) Sooner or later, all stars use their hydrogen. And then they turn into red giants. Sun is a yellow G spectral class star that turns into a white dwarf. But before that, the sun will turn larger.  The sun turns red and that means. It starts to send more infrared radiation. This thing will turn Earth into a hellish temperature that vaporizes water from Earth.  It's possible. That Earth will also vaporize with Venus and Mercury. Some scientists say that we have only 1 billion years to move farther in the solar system. The habitable zone will go to the distance of Jupiter and Saturn, and maybe humans find a safe place in those distant moons.  It's possible that before Sun will grow too large humans make large groups of mirror satellites or large shields that sho...

Metamaterials can change their properties in an electric- or electro-optical field.

"Researchers have created a novel metamaterial that can dynamically tune its shape and properties in real-time, offering unprecedented adaptability for applications in robotics and smart materials. This development bridges the gap between current materials and the adaptability seen in nature, paving the way for the future of adaptive technologies. Credit: UNIST" (ScitechDaily, Metamaterial Magic: Scientists Develop New Material That Can Dynamically Tune Its Shape and Mechanical Properties in Real-Time) Metamaterials can change their properties in an electric- or electro-optical field.  An electro-optical activator can also be an IR state, which means. The metamorphosis in the material can thermally activate.  AI is the ultimate tool for metamaterial research. Metamaterials are nanotechnical- or quantum technical tools that can change their properties, like reflection or state from solid to liquid when the electric or optical effect hits that material. The metamaterial can cru...

The new observations and observation tools are revolutionizing nanotechnology and the way of thinking in physics.

ScitechDaily.com "A new study has overturned a fundamental principle of physics by demonstrating that similarly charged particles can attract each other in a solution, with the effect varying between positive and negative charges depending on the solvent. This discovery has significant implications for various scientific processes, including self-assembly and crystallization". (ScitechDaily, Opposites Attract, Likes Repel? Scientists Overturn Fundamental Principle of Physics) The research reveals the importance of solvent structure at the interface in determining interparticle interactions, challenging long-held beliefs and indicating a need for a re-evaluation of our understanding of electromagnetic forces. Credit: Zhang Kang". (ScitechDaily, Opposites Attract, Likes Repel? Scientists Overturn Fundamental Principle of Physics) New observations about magnetic fields. And same polar particle or object interaction revolutionized the knowledge of magnetism. They say. The sy...